2018 Workshop on Topological Methods in Analysis and Algebra Borriana, June 14th-15th, 2018

Strong norming sets and the separable quotient problem

by M. López Pellicer Departamento de Matemática Aplicada and IUMPA Universitat Politècnica de València

Abstract

Mazur's open problem asks if an infinite dimensional Banach space E admits an infinite dimensional separable quotient (1932 and SQP in brief). Saxon-Wilansky's paper [6] contains six equivalent properties to SQP and the property P2, the existence of a dense non-barrelled subspace, is due to Saxon and Wilansky.

A subset C of a normed space $(E, \|\cdot\|)$ is norming if its bipolar $C^{oo} = \overline{\operatorname{abcx} C}$ is a bounded neighborhood of 0. C is strong norming if each increasing covering of C contains a norming set.

We will present some examples and topological properties of strong norming sets that enables to get that an infinite dimensional Banach space $(E, \|\cdot\|)$ has SQP if and only if the unit sphere S_E contains a dense non strong norming subset.

Finally, we will survey some general results and problems related to SQP following [1], [3], [4], [5] as well as some particular Banach spaces of vectorvalued functions, linear operators and vector measures with infinite dimensional separable considered in [2].

References

- S.A. Argyros, P. Dodos and V. Kanellopoulos, Unconditional families in Banach spaces. Math. Ann. 341 (2008) 15-38.
- [2] J.C. Ferrando, J. Kąkol, M. López-Pellicer and W. Sliwa, On the separable quotient problem for Banach spaces. arXiv:1709.09646v1 [math.FA].
- [3] S. López-Alfonso and S. Moll, The uniform bounded deciding property and the separable quotient problem, Submitted.
- [4] J. Mujica, Separable quotients of Banach spaces, Rev. Mat. Complut. 10 (1997), 299-330.
- [5] W. Śliwa, The separable quotient problem and the strongly normal sequences, J. Math. Soc. Japan 64 (2012) 387-397.
- S.A. Saxon and Wilansky, The equivalence of some Banach space problems. Colloq. Math. 37 (1977) 217-226.